The following theorem gives a practical method for evaluating a double integral by expressing it as an iterated integral. 

 

Fubinis Theorem

If  is continuous on the rectangle 

Then

More generally, this is true if we assume that  is bounded on  is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

 

 

EXAMPLE 8: Evaluate the double integral  where 

 

SOLUTION 1: Fubinis Theorem gives

Text Box

SOLUTION 2: Again applying Fubinis Theorem, but this time integrating with respect to x first, we have 

 

 

EXAMPLE 9: Evaluate the double integral , where 

 

 If we first integrate with respect to  , we get 

Text Box

The double integral of  can be written as the product of two single integrals: 

 

EXAMPLE 9if , then