Double Integrals in Polar

 

Sometimes a double integral is easier to evaluate using polar coordinates. This is especially true if the region of integration can be easily defined using a polar equation. 

The following formula for converted between rectangular and polar coordinates are needed.

The polar coordinates  of a point are related to the rectangular coordinates  by the equations

Change to Polar Coordinates in a Double Integral If   is continuous on a polar rectangle  given

we convert from rectangular to polar coordinates in a double integral by writing  and using the appropriate limits of integration for  and   , and replacing  by 

 

 

EXAMPLE 1: Evaluate where  is the region in the upper half-plane bounded by the circles  

The region  can be described as 

It is the half-ring and in polar coordinates it is given by