Green's Theorem in the Plane

 

Introduction

If  is a conservative field, then we know   for a differentiable function  and we can calculate the line integral of  over any path  joining point  to  In this section we derive a method for computing a work or flux integral over a closed curve   in the plane when the field  is not conservative. This method comes from Greens Theorem, which allows us to convert the line integral into a double integral over the region enclosed by .

Suppose that  is the velocity field of a fluid flowing in the plane and that the first partial derivatives of  and  are continuous at each point of a region .